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SURFACES 

F. S. HENRY and M. W. COLLINS 
ThmmO-Fluidr Engineering Research Centre, City University, Northompton Sqwae. London ECI V OHB. U.K. 

SUMMARY 
Fully developed, steady flow through an annulus with a multistart, helical-ribbed inner cylinder is 
numerically predicted and compared with available data. To facilitate comparison, the transverse-ribbed 
case is included. It is predicted that substantial differences exist between turbulent flow over helical ribs and 
that over transverse ribs. The predictions clarify the experimental finding that helical-ribbed cylinders can be 
expected to have better pressure drop and heat transfer characteristics than transverse-ribbed cylinders. For 
this work the AERE Harwell code FLOW3D Release 2 was used. 
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1. INTRODUCTION 

Flow over artificially roughcned surfaces has been the subject of much study primarily because of 
the enhanced rates of heat transfer achievable from such surfaces. The roughened elements are 
commonly small ribs of square cross-section that are placed periodically and at right angles to the 
mean flow direction. The price paid for the higher heat transfer rates is an increase in pressure 
drop. There is also the possibility of ‘hot spots’ on the roughened surfaces if the elements cause the 
flow to separate. 

Flow over surfaces with transverse ribs has been the subject of several experimental investiga- 
tions. Most researchers have studied the flow over transverse-ribbed plane surfaces. Lawn’s’ data 
are probably the most extensive. Numerical predictions of these flows are less common. Wilkes 
and Firth2 simulated some of Lawn’s results for plane surfaces using the k-& model. However, to 
the best of the authors’ knowledge, no calculations for the annular case have been published. 

Pirie3 made a series of measurements of pressure drop and heat transfer in the flow through 
annuli with inner cylinders having multistart, helical ribs. Pirie’s data showed that helical-ribbed 
surfaces have superior pressure drop and heat transfer characteristics when compared to surfaces 
with transverse ribs. However, to date, no measurements have been made of the details of the flow 
in the inter-rib channel, and hence the question of flow separation remains unanswered. 

This paper describes the initial phase of a detailed numerical study of heat transfer from helical- 
ribbed cylinders in the context of the Advanced Gas-cooled Reactor fuel element. Specifically, this 
paper deals with the calculation of the steady, turbulent, fully developed flow field. For purposes 
of comparison, the transverse-ribbed case was also predicted. 
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2. NUMERICAL SOLUTION 

The governing equations were solved using FLOW3D, which is a general, three-dimensional, 
flow-modelling code developed by AERE Harwell. FLOW3D uses a control volume approach 
and the current version (Release 2) allows the use of non-orthogonal body-fitted co-ordinates on a 
non-staggered grid. Body-fitted co-ordinates were necessary for the flow geometry under consid- 
eration. The code's standard k-& model was employed together with wall functions at the solid 
boundaries. Details of the development of FLOW3D with body-fitted co-ordinates have been 
given by Burns et a1.4 and general details of FLOW3D by Jones et aL5 The programme was run 
on the Cray 2 at Harwell using the IBM front-end. 

3. FLOW DETAILS AND GRIDDING SYSTEMS 

3.1. Geometrical and other $ow details 

Schematic diagrams of transverse- and helical-ribbed cylinders are given in Figure 1. Details of 
the five ribbed geometries considered are given in Table I. As can be seen, the rib (helix) angle is 
defined such that the transverse case has a value of 0". In all cases the inner cylinder root diameter 
D, was taken to be 3944 mm, the rib height e to be 1.13 mm, the rib pitch to be 7.29 mm and the 
inner diameter of the outer cylinder, Dz, to be 98-09 mm. The rib widths were chosen so that all 
geometries had the same value (0-8609 mm) in the axial direction and hence the same inter-rib 

Figure 1. Schematic diagrams of ribbed surfaces 
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Table I. Flow channel geometry 

Case 1 2 3 4 5 
Number of starts - 4 6 12 30 
Rib angle (deg) 0 12.887 18-941 34-464 59-767 
Rib width at mid-height (mm) 08609 08416 08153 0.7100 04335 

Table 11. Flow and fluid characteristics 

Mass flow rate (kg s- ') 0.45 
Density p (kg m-3) 1.15 
Viscosity p (kg m-I s - ' )  1.96 10- 5 
Re= P ( D , - D , ) ~ n I l ~  2.13 x 105 

channel width in that direction. Further, the rib widths were chosen so that the 34" case matched 
that used by Pirie.6 The smooth-walled annuli were assumed to have inner diameters of 39.44 mm 
and outer diameters of 98.09 mm. 

To reduce the computational effort to a minimum, all flows were assumed to be incompressible 
and fully developed. It was further assumed that the density and molecular viscosity were not 
functions of temperature. The flow Reynolds number was chosen to match that used by 
Mass flow rate and fluid properties are given in Table 11. In all cases the mass flow rate and 
density were kept constant at the values given in Table 11. When required, the Reynolds number 
was changed by adjusting the viscosity. 

3.2. Boundary conditions and grids for flow calculations 

In the transverse-ribbed case the assumption of fully developed flow required the velocity field 
to be periodic in the axial direction. Note that the axial momentum equation was made periodic 
by defining a modified pressure field. The required modification is discussed in Section 4.1. The 
assumption of fully developed flow meant that it was necessary to model only one rib pitch. The 
solution domain for the transverse case is shown schematically in Figure l(a) as the hatched area 
ABCD. The lines AB and CD denote planes of periodicity. 

FLOW3D treats all flows as three-dimensional and requires dummy nodes at either end of all 
co-ordinate directions to implement boundary conditions. Consequently, the minimum number 
of control volumes in any one direction is three. For example, in the case of axisymmetric flows 
(as is the flow over transverse ribs) the grid has only one active node in the angular direction, 
but dummy nodes are required either side to satisfy the symmetry boundary conditions. 
The total number of control volumes (active and dummy) used in the transverse-ribbed case 
was 16 x 24 x 3. 

In the helical-ribbed case it was necessary to use a non-orthogonal grid. The solution domain 
for this case is shown schematically as the hatched area ABCD in Figure l(b) and a sample grid is 
shown in Figure 2. In this case the assumption of fully developed flow meant that the flow was 
periodic in both the axial and angular directions. This double periodicity meant that it was 
necessary to model only the flow in the angular segment shown in Figure 2. The segment is 
bounded by planes of periodicity in the angular direction. These planes are shown schematically 
as lines AD and BC in Figure l(b). Only one active control volume was necessary in the flow 
direction in this case, because the nature of the fully developed flow over the helical ribs is such 
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Figure 2 Grid slices for helical-ribbed case 

that all 00w quantities, except pressure, are constant for constant radial position in planes 
parallel to the ribs, i.e. in the direction denoted as I in Figure2. Fully developed 00w was 
generated by invoking periodic boundary conditions in the I-direction. Unless otherwise stated, 
all helical-ribbed predictions were generated on 3 x 24 x 16 grids similar to that shown in 
Figure 2. 

In order to ensure that all predictions were of comparable accuracy, the transverse grid was 
made geometrically similar to the helical grids. That is, the grids in the radial direction were 
identical and the same number of control volumes was used in the axial direction of the transverse 
grid as was used in the angular direction of the helical grids. Also, each active control volume in 
the axial direction of the transverse grid was made to correspond to an active control volume in 
the angular direction of the helical grids. 

The correspondence between the two grids shown schematically in Figure 1 may not be 
immediately obvious. However, owing to the double periodicity of the helical flow, positions in 
the angular direction correspond identically to positions in the axial direction. That is, moving 
away from the rib in the angular direction at a constant axial position corresponds to moving 
away from the rib in the axial direction at a constant angular position. Hence, while the rib is in a 
different position in the helioal grid to that in the transverse grid, individual control volumes in 
one grid correspond exactly to individual control volume in the other grid. Note that the plots of 
the change of various parameters in the helical flows with axial distance, discussed in Section 4, 
were constructed using this spatial correspondence. 

The number of control volumes used to resolve the rib was limited by the need for the first 
computational point to be above the viscous sublayer. In fact, only two control volumes could be 
used over the rib height and a similar number across the rib width at the design Reynolds number 
(2.13 x lo’). To reduce the total number of control volumes, the grid was expanded away from all 
solid surfaces. 
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4. PREDICTIONS 

4.1. Smooth-walled annulus 

Initial calculations were carried out for the flow through a smooth-walled annulus. These 
calculations were used primarily in the development and testing of the procedure to simulate fully 
developed, periodic flow with a fixed, known, mass flow rate. Fully developed flow was modelled 
by invoking the periodic boundary condition option in the axial (x-) direction. The axial 
momentum equation was made periodic by defining a periodic pseudo-pressure P * such that 

P* = P + APx/l. (1) 
For fully developed flow over ribbed cylinders the pressure drop AP is the overall pressure drop 
per rib pitch; hence in this case 1 represents the rib pitch. In the case of smooth cylinders AP/l is 
simply the pressure drop per unit length. The pressure term in the axial momentum equation can 
be written as 

(2) 
ap ap* AP 
ax ax +7 --=-- 

The pressure drop per unit length, AP/Z, is included as a source term in the axial momentum 
equation. The resulting equation is then periodic in both velocity and pseudo-pressure. 

In FLOW3D all modifications to source terms are carried out in a user-defined routine called 
USRSRC. The original version of this routine was written such that, starting from any reasonable 
guess, the pressure drop was adjusted each iteration by a factor proportional to the ratio of the 
desired mass flow to the current mass flow. This resulted in the pressure drop being reduced if the 
current mass flow was too high and increased if the mass flow was too low. While this procedure 
eventually produced a converged solution, the predicted value of pressure drop oscillated for 
some considerable time. It was found that this oscillation could be greatly reduced with a minor 
modification to the original procedure. This entailed keeping a running average of the source 
pressure drop and reinitializing the current value with the average every 50 iterations. An 
unexpected bonus to this modification was that the axial momentum residual, used as a test of 
convergence, was reduced by several orders of magnitude. 

Unfortunately, data of sufficient detail for the variation of the various flow parameters could 
not be found for turbulent flow in a smooth annulus. However, friction factor predictions could 
be compared with a number of experimental data. For instance, Lawn and Elliot’ measured 
pressure drops for the fully developed flow of air in smooth annuli of various radius ratios. They 
found that, except for very small values of radius ratio, the friction factor was independent of 
radius ratio and, up to a Reynolds number of lo’, the data were well matched by a line that lay 
5% above the Blasius line for smooth pipe flow, i.e. the best fit line could be given as 

f= 0-079C (Re),  (3) 

where C = 1.05. 
Estimates using the above correlation are compared with predictions in Table 111. It can be 

seen that values estimated from Lawn and Elliot’s correlation are well matched by the model. For 
Reynolds numbers below lo5 the predictions and correlation values are within 1% of each other. 
As expected, at the highest Reynolds number considered the model’s prediction is higher (3%) 
than the correlation values. Hence it can be concluded that FLOW3D can accurately predict the 
pressure drop in turbulent smooth annular flow. 

Included in Table I11 are friction factor predictions for various grids for the lowest and highest 
Reynolds numbers. J V is the number of control volumes, of equal size, across the channel. It can 
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Table 111. Theoretical and predicted friction factors for turbulent flow in a smooth annulus. All but last 
prediction produced using k-& turbulence model. Last entry produced using full Reynolds stress (RS) model 

~~~ 

Friction factor 

Re JV APJl T W l  7w2 Y :  Y: Red. Exp. 

3.00 x 104 24 
36 
48 

6-00 x 104 24 
1.00 x 105 24 
2.13 x 105 24 

36 
48 

RS 24 

949-5 
962.6 

11 14.0 
793.3 
704.2 
5995 
597.9 
597.7 
865.6 

-15.29 13-37 18.6 17.1 
-15.44 13.58 12.4 11.5 
-17.50 15.86 9.9 9.3 
-12.73 11.19 34.0 31.2 
- 11.27 9.95 53.5 49.1 
-9-56 8.48 104.8 96.7 
-9.48 8.48 69.3 64.6 
-9.46 8.49 51.8 48.6 
- 10.09 9.28 114.4 107.5 

000630 000630 
0.00639 
0.00739 
0.00526 0.00530 
000467 0.00466 
000398 000386 
0.00397 
000396 
0.00574 

be seen that the predictions at the higher Reynolds number are little affected by the grid 
refinement. This is because in all three grids the near-wall boundary point is well outside the 
viscous sublayer. However, in the case of the lower-Reynolds-number predictions it can be seen 
that the friction factor is overpredicted by approximately 17% when the near-wall boundary 
point is forced into the viscous sublayer. The above illustrates the constraints placed upon grid 
refinement when wall functions are employed. 

That the solution can be influenced by the position of the near-wall boundary point is not an 
unexpected result. Henry and Reynolds' have shown analytically that for plane Couette flow the 
point at which the model equations are matched to the near-wall boundary conditions is an 
important parameter of the solution. 

4.2. Smooth-walled annulus with inner cylinder rotating 

Bradshaw' showed that models based on the eddy viscosity concept cannot be expected to 
predict accurately flows with significant streamline curvature. Unfortunately, the swirling flows of 
interest in this study belong to this class. To investigate the extent of this problem, a simple 
swirling flow, that of the flow in a smooth annulus with the inner cylinder rotating, was 
considered. 

Experimental data for this flow have been provided by Kuzay and Scott." Sharma et al." 
carried out a numerical study of the same flow. They were able to match the Kuzay-Scott data 
using a mixing length model that incorporated a modification suggested by Bradshaw." An 
interesting feature of this flow is that the angular momentum is essentially constant across the 
fully turbulent core of the flow. 

In terms of the k-& model the modification suggested by Bradshawl' can be written as 

Vr- '-v I (l-PRi)', (4) 

where 

The coefficient /3 is taken to be 5. The above modification is usually termed the Richardson 
number correction and was incorporated in FLOW3D using the user-defined routine USRVIS. 
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Calculations with and without the modification were carried out for various values of rotational 
speed of the inner cylinder. 

Predicted curves of angular momentum are shown in Figure 3 for the standard model and for 
the case with the Richardson number correction. The Reynolds number is 2.13 x lo5 and the 
inner surface is rotating at a velocity equal to the mean axial velocity (62 m s-'). It can be seen 
that the curve for the case with the correction displays the expected behaviour of a nearly 
constant value throughout, while the unmodified case does not. 

Predictions of overall pressure drop per unit length are given in Figure 4 for the case of f l=  0, 
i.e. with no Richardson number correction. The flow Reynolds number is 2-13 x 10'. For 
comparison, values estimated from Figure 7 of the paper by Sharma et al." are included; the 
original data were not available. The predictions were used rather than the experimental data 
because Sharma et al." showed that some of the flows measured by Kuzay and Scott" were not 
fully developed. It can be seen that the standard k-& model consistently underpredicts the 
pressure drop. Also included is a prediction with the Richardson number correction included 
(b=5).  It can be seen that, for this one case at least, including the Richardson number 
correction significantly improves the pressure drop prediction. 

The above results would appear to offer a simple method of improving the accuracy of the k-e 
model within FLOW3D when applied to swirling flows. However, when the modification was 
applied to the case of flow over helical ribs, it was found that physically realistic, converged 
solutions were impossible to achieve. A converged solution could be achieved only if the 
correction was introduced gradually, i.e. if /3 was increased from 0 to 5 in small increments over 
several runs. However, the resulting solution was not physically realistic. 

It must be concluded that while the Richardson number correction shows promise it improving 
the prediction of swirling flows, more work needs to be done on how to implement it within 
FLOW3D. It should be mentioned that no modifications were made to the wall functions. This is 
probably a major source of error, since most of the change of angular momentum occurs very 
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Figure 3. predicted radial distribution of angular momentum in turbulent flow in a smooth annulus with inner cylinder 
rotating 
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Figure 4. Predicted pressure drop for turbulent flow in a smooth annulus versus rotational speed of the inner cylinder 

close to the wall. It would appear that the wall functions should be modified in such a way as to 
include the Richardson number effect. It is probably significant that Sharma et uL1' did not use 
wall functions in their predictions, but solved to the wall. Unfortunately, modification of the wall 
functions within FLOW3D is not a straightforward exercise and time constraints did not permit 
further investigation of this matter. 

The above calculations confirm the fact that the standard k--E model is deficient in predicting 
swirling flows. Since it was not found possible to include the Richardson number correction to the 
calculation for flow over helical ribs, it must be expected that these deficiencies will manifest 
themselves in the results for these flows. For example, it can be expected that the predicted 
pressure drop will be lower than that found experimentally. 

4.3. Flow over ribbed surfaces 

Five rib geometries were considered: transverse ribs and 13", 19", 34" and 60" helical ribs. 
Velocity profiles for the 34" helical case are given in Figure 5. Included are the measurements of 
Pirie.6 It can be seen that the model matches the angular velocity profile quite well, but the axial 
profile is less well predicted. The model predicts that the influence of the rib is only felt a few rib 
heights away from the roughened surface, but it is predicted to generate an average swirl velocity 
of approximately 20% of the axial component. 

Near-wall values of the velocity components within the inter-rib channel are given in 
Figures 6-8. Figures 6 and 7 show evidence of separation and recirculation for the transverse case 
and the 13" helical case. Figure 8 again shows evidence that the 34" helical case generates the 
largest swirl velocity. 

Near-wall values of kinetic energy, dissipation rate and eddy viscosity in the inter-rib channel 
are given in Figures 9-1 1 respectively. The relationship between viscosity, energy and dissipation 
assumed in the k--E model requires that areas of relatively low energy and high dissipation are 
regions of low viscosity. This relationship is manifest in the three figures. Again, the non- 
dimensionalized viscosity can be interpreted as a turbulence Reynolds number and it can be seen 
that near the ribs the assumption of a high value of this parameter is violated. 
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Figure 5. Predicted and experimental6 velocity distributions for turbulent flow over 34" helical ribs (See Figure 2 for 
definition of K.) 
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Figure 6. Predicted variation of near-wall ( ( r -r1) /e=025)  axial velocities in the inter-rib channel of turbulent flow over 
transverse and helical ribs 

Velocity vector plots are presented in Figures 12-16. These were constructed in order to 
investigate further the occurrence of separation and recirculation in the rib region. Only in the 
transverse rib case do the presented velocity vectors represent the total velocity. In all other cases 
the velocity vectors represent the components that lie in a radial-axial plane. 

The transverse-ribbed case is shown in Figure 12 and it would appear that the flow separates 
upsteam and downstream of the rib. The upstream recirculation region is shown to be con- 
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Figure 7. Predicted variation of near-wall ((r -r1)/e=0.25) radial velocities in the inter-rib channel of turbulent flow 
over transverse and helical ribs 
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siderably smaller than the downstream region. These findings are compatible with the experi- 
mental data of Lawn' and the numerical predictions of Wilkes and Firth.' 

The 13" helical-ribbed case is shown in Figure 13 to be similar to the transverse-ribbed case in 
that there is evidence of separation upstream and downstream of the rib. Separation in the 19" 
case, shown in Figure 14, would appear questionable. However, the plot could be interpreted as 
showing evidence of vortices tucked into the rib channel comers. 

The 34" and 60" cases, shown in Figures 15 and 16 respectively, show no evidence of separtion. 
It must be remembered when considering the helical rib plots that the ribs are really at an angle to 
the paper and that the flow can appear to be going through the rib when in fact it is passing 
behind or in front of it. All five plots give further evidence of the fact that the rib influence is 
confined to a region only two to three rib heights high. 

Values of axial and radial components of wall shear stress are presented in Figure 17. Only the 
transverse-ribbed and the 13" helical-ribbed cases show areas of negative axial shear. This 
supports the conclusion that probably only the 13" helical-ribbed case has areas of separation and 
recirculation either side of the rib. From Figure 17 it can be estimated that the reattachment point 
for the transverse case is predicted to be approximately 2.7 rib heights downstream of the rib's 

1 
x (mm) 

0 

Figure 13. Predicted velocity vectors (U+ V) for turbulent flow over 13" helical ribs 

Figure 14. Predicted velocity vectors ( V +  V) for turbulent flow over 19" helical ribs 
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Figure 15. Predicted velocity vectors ( U +  V )  for turbulent flow over 34" helical ribs 

2.171 

Figure 16. Predicted velocity vectors (U + V) for turbulent flow over 60" helical ribs 

back face. No experimental data appear to exist for the cylindrical transverse. case nor for the 
helical cases, but Lawn's' data for the plane transverse case give a value of 2.3 rib heights. 
Corresponding angular components of wall shear are given in Figure 18 for the four helical- 
ribbed cases. It can be seen that the 34" case has the highest shear in the angular direction. This 
should be expected since it is this case that has the largest swirl velocity. 

4.4. Pressure drop 

Predicted axial variations of surface pressure for all cases are shown in Figure 19. As expected, 
the transverse-ribbed case is predicted to have the largest variation and largest overall pressure 
drop, and the 60" helical-ribbed case the least. 

A curve of the predicted variation of overall pressure drop per unit length with rib angle for the 
turbulent cases is given in Figure 20. Pirie's3 experimental data exhibit a similar trend to that seen 
in Figure 20. Pressure drop predictions for all cases considered are given in Table IV. 

Included in Table IV is Pirie's6 measured value for turbulent, flow over the 34" helical-ribbed 
case. It can be seen that the model predicts the pressure drop for this case to be approximately 
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Figure 17. Predicted variation of axial and radial components of wall shear stress over the ribbed surface of turbulent 
flow over transverse and helical ribs 

Table IV. Predicted and experimental6 
pressure drop per-unit length 

CaSe AP/l  (Pam-') 

Transverse 1805 
Helical 

13" 1685 
19" 1542 
34" 1139 (1682 exp.) 
60" 753 

Smooth 598 

30% below the measured 
improved by 'tuning' the 

value. It is probable that the predicted pressure drop could have been 
constants in the model equations and/or those in the wall functions. 

However, no logical argument could be formed for doing so, particularly since the smooth-walled 
annuli pressure drop predictions were found to be accurate. 

4.5. Grid reJinement 

The poor prediction of the axial velocity profile and overall pressure drop was thought to be 
due probably, in large part, to the coarseness of the grid employed. However, the values of near- 
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Figure 18. Predicted variation of angular component of wall shear stress over the ribbed surface of turbulent flow over 
and helical ribs 

Table V. Refined grid details. J V I  and KVI are the number of 
control volumes over the rib height and width respectively 

Grid JVI N J  KV1 NK 

1 4 34 4 22 
2 6 40 6 28 
3 10 48 10 36 

wall eddy viscosity presented in Section 4.3 indicated that often the near-wall points were at 
barely acceptable distances from the wall. It was shown in Section4.1 that if grid refinement 
moved the near-wall points into the viscous sublayer, then it could be expected that the resulting 
prediction would be less accurate rather than more so. Hence any refinement at the design 
Reynolds number was not possible unless substantial changes were made to the turbulence model 
to account for molecular viscosity effects. 

Grid refinement tests were carried out for the 34" helical rib case. In order to ensure that the 
near-wall points were above the viscous sublayer, the flow Reynolds number was raised to lo6 by 
reducing the viscosity to 4.182 x All other flow parameters remained the same as for the 
lower-Reynolds-number calculations. Three refined grids were used. Details are given in Table V. 



336 F. S. HENRY AND M. W. COLLINS 

5001 back t o p  f r o n t  

I I I  I 

-100 I I l o /  I 
Figure 19. Predicted variation of pressure on the ribbed surface of turbulent flow over transverse and helical ribs 
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Figure 20. Predicted variation of pressure drop with rib angle 

Axial velocity profiles for the coarse grid and for refined grid 3 are given in Figure 21. It can be 
seen that there is little difference between the coarse and refined grid profiles. The fact that 
predicted profile does not match the experimental curve would not appear to be a result of any 
inaccuracies introduced by the coarseness of the original grid. 
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Figure 21. Coarse and refined grid predictions and measurements6 of axial velocity distribution for turbulent flow over 
34" helical ribs 

The predicted overall pressure drop per unit length as a function of the number of control 
volumes used to resolve the rib height is given in Figure 22. The actual predicted values are given 
in Table VI together with minimum y+-values. It can be seen that grid refinement increased the 
predicted pressure drop by almost 27%. However, even the largest refined grid pressure drop 
prediction is approximately 18% lower than that estimated from Pixie's6 experiments. The fact 
that refined grid 3 gave a slightly lower value than refined grid 2 may be due to the fact that some 
of the near-wall points of the more refined grid were too close to the viscous sublayer. 
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Table VI. Grid refinement results (Re= lo6) 

Grid AP/l (Pam-') y:in 

Coarse 968 84 
Refined 

1 1157 42 
2 1226 26 
3 1187 12 

1500 (exp.1 

A further reason for carrying out the grid refinement exercise was to investigate the possibility 
that the original grid used was too coarse to pick up any separation of the flow about the ribs. 
However, the refined calculations showed no evidence of separation and generally confirmed the 
trends predicted using the coarse grid. 

While grid refinement has been shown to improve the pressure drop prediction, it would seen 
obvious that there are other factors contributing to the poor pressure drop and axial velocity 
profile predictions. It is more than likely that these factors have their roots in the underlying 
assumptions used in the construction of the standard k--E turbulence model; in particular, the 
neglect of the effect of streamline curvature. 

5. CONCLUSIONS 

Turbulent flow through annuli with rib-roughened inner cylinders has been modelled using 
FLOW3D. Where possible the results have been compared with existing data. It has been 
predicted that there are significant differences between turbulent flow over helical-ribbed cylin- 
ders compared to that over cylinders with transverse ribs. It is difficult to dismiss these differences 
as simply due to any lack of precision in the results. This is because all predictions are of 
comparable accuracy and the predictions for the transverse case agree in general with the 
measurements of Lawn' and the predictions of Wilkes and Firth.' However, grid refinement did 
produce improvements in overall pressure drop. 

It was predicted that there are no regions of separation and recirculation in turbulent flow over 
the helical-ribbed geometry except for very acute rib angles; specifically, less than 19". The results 
show that the flow travels more smoothly over helical-ribbed cylinders and this would seem to be 
the mechanism responsible for the reduction in pressure drop. Also, the substantial increase in the 
magnitude of the near-wall velocities in the inter-rib channel of the helical-ribbed cylinder 
compared to the transverse-ribbed case would suggest that 'hot spots' are less likely to occur in 
the former case. 

The differences seen between the experimental data and the predictions for turbulent flow over 
the rib-roughened surfaces underline the need for improvement in the k-8 turbulence model. The 
Richardson number correction showed some promise, but more work needs to be done in 
implementing it within FLOW3D. It also appears that the use of wall functions for the ribbed 
geometry considered may not be appreciate. However, solving to the wall would require a radial 
modification to the model equations within FLOW3D. 
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APPENDIX: NOTATION 

C 
D 
e 

J V  
J V l  
k 
1 
N J  
N K  
P 
P *  
Re 
Re, 
r 
urn 
U* 
W 

Y 
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Y +  
B 
AP 

cc 

vt 

P 
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& 
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vl 

a constant 
diameter 
rib height 
friction factor 
number of control volumes across smooth channel 
number of control volumes across rib height 
turbulence kinetic energy 
axial distance 
total number of control volumes in J-direction 
total number of control volumes in K-direction 
time-averaged pressure 
pseudo-pressure 
Reynolds number (Re = p ( D ,  - D, ) Urn/p) 
turbulence Reynolds number 
radical position 
bulk or mean velocity 

velocity in angular direction 
axial position 
normal distance from solid wall 
YU*IV  
a constant 
pressure drop 
rate of energy dissipation 
viscosity 
kinematic viscosity 
kinematic eddy viscosity 
see equation (4) 
density 
wall shear stress 

(L IPS‘z  
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